12 research outputs found

    DEFINITION OF AN ADVANCED PROCESS FOR THE PRODUCTION OF LOW ENVIRONMENTAL IMPACT CONTAINERS AS POTENTIAL ALTERNATIVE TO PLASTICS

    Get PDF
    For decades, petroleum-based synthetic polymers, commonly known as plastics, have become one of the most appealing materials used for a wide variety of applications. Nevertheless, currently, conventional petroleum-based plastics represent a serious problem for global pollution because remain for hundreds of years in the environment when discarded. In order to reduce dependence on fossil resources, bioplastic materials are being proposed as safer and more sustainable alternatives. Bioplastics are bio-based and/or biodegradable materials, typically derived from renewable sources. Among different resources, food waste is attracting more and more attention in the research field of bioplastics’ production. The sources of food waste include household, commercial, industrial and agricultural residues. In fact, every year, around one-third of all food resources produced for human consumption are lost or wasted. Although European Union guidelines stated that food waste should preferentially be used as animal feed, in some cases, it became illegal because of disease control concerns and other times its nutritional value is very poor. On the other hand, the production of bioplastics from food waste is a renewable, sustainable process, in which materials are fabricated from carbon neutral resources, thus aligning itself with the principles of the circular bioeconomy. However, the conversion of fruit and vegetable by-products into eco-friendly materials with mechanical and hydrodynamic performances comparable to those of fuel-based plastics still remains a challenge. In this thesis, different approaches have been investigated for the valorization of fruit and vegetable wastes to produce low environmental impact materials, as a potential alternative to plastics with application in the field of food packaging. In the first section, apple waste and tomato peel by-products have been used as fillers to fabricate starch-based biocomposites. The mechanical characterization of the samples showed their suitability for covering purposes, since a ductile and soft behaviour was exhibited. In the second section, an avocado by-product extract has been incorporated to an ethyl cellulose matrix for the production of impregnated paper with enhanced durability. Since fruit wastes can contain potential pathogens and physical and chemical contaminants which can be released when used as additive for active packaging, a preliminary untargeted metabolomic characterization of the extract was conducted by LC-ESI(-)-Q Exactive-Orbitrap- MS/MS. The lipid components detected in the extract proved to be useful additives to improve paper hydrophobicity, preventing food browning and moisture loss. In general, the addition of all tested wastes (apple waste, tomato peel and avocado by-products) has proved to be useful to increase the biodegradability of the fabricated biomaterials. Hence, the environmental benefits associated with their recovery are proposed as a driving force to expand their further use for these purposes. The upcycling of food waste through the production of value-added products is an ideal and practical end use, allowing to save huge economic and energy losses

    A Critical Overview of Enzyme-Based Electrochemical Biosensors for L-Dopa Detection in Biological Samples

    Get PDF
    L-Dopa is an intermediate amino acid in the biosynthesis of endogenous catecholamines, such as dopamine. It is currently considered to be the optimal dopaminergic treatment for Parkinson’s disease, a neurodegenerative disorder affecting around 1% of the population. In an advanced stage of the disease, complications such as dyskinesia and psychosis are caused by fluctuations in plasma drug levels. Real-time monitoring of L-Dopa levels would be advantageous for properly adjusting drug dosing, thus improving therapeutic efficacy. Electrochemical methods have advantages such as easyto- use instrumentation, fast response time, and high sensitivity, and are suitable for miniaturization, enabling the fabrication of implantable or wearable devices. This review reports on research papers of the past 20 years (2003–2023) dealing with enzyme-based biosensors for the electrochemical detection of L-Dopa in biological samples. Specifically, amperometric and voltammetric biosensors, whose output signal is a measurable current, are discussed. The approach adopted includes an initial study of the steps required to assemble the devices, i.e., electrode modification and enzyme immobilization. Then, all issues related to their analytical performance in terms of sensitivity, selectivity, and capability to analyze real samples are critically discussed. The paper aims to provide an assessment of recent developments while highlighting limitations such as poor selectivity and long-term stability, and the laborious and time-consuming fabrication protocol that needs to be addressed from the perspective of the integrated clinical management of Parkinson’s disease

    An Amperometric Biosensor Based on a Bilayer of Electrodeposited Graphene Oxide and Co-Crosslinked Tyrosinase for L-Dopa Detection in Untreated Human Plasma

    Get PDF
    L-Dopa, a bioactive compound naturally occurring in some Leguminosae plants, is the most effective symptomatic drug treatment for Parkinson’s disease. During disease progression, fluctuations in L-DOPA plasma levels occur, causing motor complications. Sensing devices capable of rapidly monitoring drug levels would allow adjusting L-Dopa dosing, improving therapeutic outcomes. A novel amperometric biosensor for L-Dopa detection is described, based on tyrosinase co-crosslinked onto a graphene oxide layer produced through electrodeposition. Careful optimization of the enzyme immobilization procedure permitted to improve the long-term stability while substantially shortening and simplifying the biosensor fabrication. The effectiveness of the immobilization protocol combined with the enhanced performances of electrodeposited graphene oxide allowed to achieve high sensitivity, wide linear range, and a detection limit of 0.84 μM, suitable for L-Dopa detection within its therapeutic window. Interference from endogenous compounds, tested at concentrations levels typically found in drug-treated patients, was not significant. Ascorbic acid exhibited a tyrosinase inhibitory behavior and was therefore rejected from the enzymatic layer by casting an outer Nafion membrane. The proposed device was applied for L-Dopa detection in human plasma, showing good recoveries

    A validated LC–MS/MS method for quantitative determination of L-dopa in Fagioli di Sarconi beans (Phaseolus vulgaris L.)

    Get PDF
    An analytical method based on ultrasound assisted extraction (UAE) and liquid chromatography 36 coupled to electrospray tandem mass spectrometry (LC–ESI/MS/MS) was validated and applied for 37 determining L-dopa in four ecotypes of Fagioli di Sarconi beans (Phaseolus vulgaris L.), marked 38 with the European label PGI (Protected Geographical Indication). The selectivity of the proposed 39 method was ensured by the specific fragmentation of the analyte. Simple isocratic chromatographic 40 conditions and mass spectrometric detection in multiple reaction monitoring (MRM) acquisition 41 mode were used for sensitive quantification. The LC–ESI/MS/MS method was validated within a 42 linear range of 0.001–5.000 μg/mL. Values of 0.4 and 1.1 ng/mL were obtained for limit of detection 43 and limit of quantification, respectively. The repeatability, inter-day precision and recovery values 44 ranges were 0.6-4.5%, 5.4-9.9%, 83-93 %, respectively. Fresh and dried beans cultivated exclusively 45 with organic methods avoiding any synthetic fertilizers and pesticides, as well as pods, were analyzed 46 showing a L-dopa content ranging from 0.020±0.005 μg/g to 2.34±0.05 μg/g dry weight

    Analytical Methods for Extraction and Identification of Primary and Secondary Metabolites of Apple (Malus domestica) Fruits: A Review

    Get PDF
    Apples represent a greater proportion of the worldwide fruit supply, due to their availability on the market and to the high number of existing cultivar varieties and apple-based products (fresh fruit, fruit juice, cider, and crushed apples). Several studies on apple fruit metabolites are available, with most of them focusing on their healthy properties’ evaluation. In general, the metabolic profile of apple fruits strongly correlates with most of their peculiar characteristics, such as taste, flavor and color. At the same time, many bioactive molecules could be identified as markers of a specific apple variety. Therefore, a complete description of the analytical protocols commonly used for apple metabolites’ characterization and quantification could be useful for researchers involved in the identification of new phytochemical compounds from different apple varieties. This review describes the analytical methods published in the last ten years, in order to analyze the most important primary and secondary metabolites of Malus Domestica fruits. In detail, this review gives an account of the spectrophotometric, chromatographic, and mass spectrometric methods. A discussion on the quantitative and qualitative analytical shortcomings for the identification of sugars, fatty acids, polyphenols, organic acids, carotenoids, and terpenes found in apple fruits is reported

    Legal Cannabis sativa L. Dried Inflorescences: Cannabinoids Content and Cytotoxic Activity against Human HepG2 Cell Line

    Get PDF
    Cannabis sativa L. has health benefits, principally due to the levels and ratios of two impor- tant cannabinoids, ∆9-tetrahydrocannabinol (THC) and cannabidiol (CBD). THC:CBD ratio affects their pharmacological interaction for the treatment of different diseases as well as its modulation allows for a custom-made product that utilizes the distinguishing effects of CBD, THC, or both, for a peculiar patient or clinical effect. This study aims to investigate the total content of THC, CBD, and their ratio in 34 dried inflorescence legally sold in physical and online stores, by using a validated liquid chromatography-ultraviolet (HPLC-UV) method, after cannabinoids identification performed through MSn studies. Cannabinol (CBN) content was also monitored to evaluate hemp age or con- servation status. CBN content always resulted lower than limit of quantification, thus confirming well-stored fresh hemp. All investigated samples showed a total THC amount below 0.59% w/w, thus responding to legal requirements.. The total CBD amount ranged from 2.62 to 20.27% w/w and it was not related to THC level. THC:CBD ranged among 1:3 and 1:26, thus ascertaining their suitability for different target pharmacological uses. In vitro studies using human hepatoblastoma cell line HepG2 suggested that hemp extracts with THC:CBD ratios of 1:9 exhibited higher toxicity than pure cannabinoids

    An Overview of Methods for L-Dopa Extraction and Analytical Determination in Plant Matrices

    No full text
    L-dopa is a precursor of dopamine used as the most effective symptomatic drug treatment for Parkinson’s disease. Most of the L-dopa isolated is either synthesized chemically or from natural sources, but only some plants belonging to the Fabaceae family contain significant amounts of L-dopa. Due to its low stability, the unambiguous determination of L-dopa in plant matrices requires appropriate technologies. Several analytical methods have been developed for the determination of L-dopa in different plants. The most used for quantification of L-dopa are mainly based on capillary electrophoresis or chromatographic methods, i.e., high-performance liquid chromatography (HPLC), coupled to ultraviolet-visible or mass spectrometric detection. HPLC is most often used. This paper aims to give information on the latest developments in the chemical study of L-dopa, emphasizing the extraction, separation and characterization of this compound by chromatographic, electrochemical and spectral techniques. This study can help select the best possible strategy for determining L-dopa in plant matrices using advanced analytical methods

    An Overview of Methods for L-Dopa Extraction and Analytical Determination in Plant Matrices

    No full text
    L-dopa is a precursor of dopamine used as the most effective symptomatic drug treatment for Parkinson’s disease. Most of the L-dopa isolated is either synthesized chemically or from natural sources, but only some plants belonging to the Fabaceae family contain significant amounts of L-dopa. Due to its low stability, the unambiguous determination of L-dopa in plant matrices requires appropriate technologies. Several analytical methods have been developed for the determination of L-dopa in different plants. The most used for quantification of L-dopa are mainly based on capillary electrophoresis or chromatographic methods, i.e., high-performance liquid chromatography (HPLC), coupled to ultraviolet-visible or mass spectrometric detection. HPLC is most often used. This paper aims to give information on the latest developments in the chemical study of L-dopa, emphasizing the extraction, separation and characterization of this compound by chromatographic, electrochemical and spectral techniques. This study can help select the best possible strategy for determining L-dopa in plant matrices using advanced analytical methods

    A validated LC-MS/MS method for quantitative determination of L-dopa in Fagioli di Sarconi beans (Phaseolus vulgaris L.)

    No full text
    : An analytical method based on ultrasound assisted extraction (UAE) and liquid chromatography coupled to electrospray tandem mass spectrometry (LC-ESI/MS/MS) was validated and applied for determining L-dopa in four ecotypes of Fagioli di Sarconi beans (Phaseolus vulgaris L.), marked with the European label PGI (Protected Geographical Indication). The selectivity of the proposed method was ensured by the specific fragmentation of the analyte. Simple isocratic chromatographic conditions and mass spectrometric detection in multiple reaction monitoring (MRM) acquisition mode were used for sensitive quantification. The LC-ESI/MS/MS method was validated within a linear range of 0.001-5.000 μg/mL. Values of 0.4 and 1.1 ng/mL were obtained for the limits of detection and quantification, respectively. The repeatability, inter-day precision, and recovery values ranges were 0.6%-4.5%, 5.4%-9.9%, and 83%-93%, respectively. Fresh and dried beans, as well as pods, cultivated exclusively with organic methods avoiding any synthetic fertilizers and pesticides were analyzed showing an L-dopa content ranging from 0.020 ± 0.005 to 2.34 ± 0.05 μg/g dry weight

    Exploiting the Anti-inflammatory Potential of White Capsicum Extract by the Nanoformulation in Phospholipid Vesicles

    No full text
    The peppers of the Capsicum species are exploited in many fields, as flavoring agents in food industry, or as decorative and therapeutic plants. Peppers show a diversified phytochemical content responsible for different biological activities. Synergic activity exerted by high levels of antioxidant compounds is responsible for their important anti-inflammatory property. A methanolic extract was obtained from a new pepper genotype and tested for anti-inflammatory activity. The extract was incorporated into phospholipid vesicles to increase the bioavailability of its bioactive components. Two types of phospholipid vesicles were produced, conventional liposomes and Penetration Enhancer containing Vesicles (PEVs). They were tested in human monoblastic leukemia U937 cell line, showing no cytotoxic effect. The intracellular reactive oxygen species (ROS) and nitric oxide (NO) levels were measured to value the in vitro efficacy of the vesicles in regulating inflammatory responses. Liposomal incorporation significantly reduced ROS levels in extract-treated LPS-activated cells. Furthermore, LC-MS/MS analyses demonstrated that liposomes facilitated the transport of the extract components across the cell membrane and their accumulation into the cytoplasm
    corecore